3.307 \(\int (a+a \cos (c+d x))^3 \sec ^{\frac {3}{2}}(c+d x) \, dx\)

Optimal. Leaf size=131 \[ \frac {2 a^3 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}+\frac {2 a^3 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {20 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {4 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d} \]

[Out]

2/3*a^3*sin(d*x+c)/d/sec(d*x+c)^(1/2)+2*a^3*sin(d*x+c)*sec(d*x+c)^(1/2)/d+4*a^3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/c
os(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+20/3*a^3*(cos(1/2*
d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)
/d

________________________________________________________________________________________

Rubi [A]  time = 0.18, antiderivative size = 131, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {3238, 3791, 3769, 3771, 2641, 2639, 3768} \[ \frac {2 a^3 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}+\frac {2 a^3 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {20 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {4 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^3*Sec[c + d*x]^(3/2),x]

[Out]

(4*a^3*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (20*a^3*Sqrt[Cos[c + d*x]]*Ellipti
cF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a^3*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]) + (2*a^3*Sqrt[Sec
[c + d*x]]*Sin[c + d*x])/d

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3238

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3769

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1))/(b*d*n), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3791

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Int[Expand
Trig[(a + b*csc[e + f*x])^m*(d*csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0]
 && IGtQ[m, 0] && RationalQ[n]

Rubi steps

\begin {align*} \int (a+a \cos (c+d x))^3 \sec ^{\frac {3}{2}}(c+d x) \, dx &=\int \frac {(a+a \sec (c+d x))^3}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\int \left (\frac {a^3}{\sec ^{\frac {3}{2}}(c+d x)}+\frac {3 a^3}{\sqrt {\sec (c+d x)}}+3 a^3 \sqrt {\sec (c+d x)}+a^3 \sec ^{\frac {3}{2}}(c+d x)\right ) \, dx\\ &=a^3 \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)} \, dx+a^3 \int \sec ^{\frac {3}{2}}(c+d x) \, dx+\left (3 a^3\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\left (3 a^3\right ) \int \sqrt {\sec (c+d x)} \, dx\\ &=\frac {2 a^3 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 a^3 \sqrt {\sec (c+d x)} \sin (c+d x)}{d}+\frac {1}{3} a^3 \int \sqrt {\sec (c+d x)} \, dx-a^3 \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\left (3 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+\left (3 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {6 a^3 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {6 a^3 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 a^3 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 a^3 \sqrt {\sec (c+d x)} \sin (c+d x)}{d}+\frac {1}{3} \left (a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx-\left (a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {4 a^3 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {20 a^3 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a^3 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 a^3 \sqrt {\sec (c+d x)} \sin (c+d x)}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.31, size = 135, normalized size = 1.03 \[ \frac {a^3 \left (\frac {24 i \, _2F_1\left (-\frac {1}{4},\frac {1}{2};\frac {3}{4};-e^{2 i (c+d x)}\right )}{\sqrt {1+e^{2 i (c+d x)}}}+2 \left (-10 i \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-e^{2 i (c+d x)}\right ) \sec (c+d x)+\sin (c+d x)+3 \tan (c+d x)-6 i\right )\right )}{3 d \sqrt {\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^3*Sec[c + d*x]^(3/2),x]

[Out]

(a^3*(((24*I)*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))])/Sqrt[1 + E^((2*I)*(c + d*x))] + 2*(-6*I
 - (10*I)*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]*Sec[c + d*x] +
Sin[c + d*x] + 3*Tan[c + d*x])))/(3*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

fricas [F]  time = 2.24, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (a^{3} \cos \left (d x + c\right )^{3} + 3 \, a^{3} \cos \left (d x + c\right )^{2} + 3 \, a^{3} \cos \left (d x + c\right ) + a^{3}\right )} \sec \left (d x + c\right )^{\frac {3}{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^3*sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((a^3*cos(d*x + c)^3 + 3*a^3*cos(d*x + c)^2 + 3*a^3*cos(d*x + c) + a^3)*sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (a \cos \left (d x + c\right ) + a\right )}^{3} \sec \left (d x + c\right )^{\frac {3}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^3*sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)^3*sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

maple [A]  time = 0.76, size = 172, normalized size = 1.31 \[ -\frac {4 a^{3} \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-4 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))^3*sec(d*x+c)^(3/2),x)

[Out]

-4/3*a^3*(2*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^
(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*El
lipticE(cos(1/2*d*x+1/2*c),2^(1/2))-4*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d
*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (a \cos \left (d x + c\right ) + a\right )}^{3} \sec \left (d x + c\right )^{\frac {3}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^3*sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((a*cos(d*x + c) + a)^3*sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^3 \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/cos(c + d*x))^(3/2)*(a + a*cos(c + d*x))^3,x)

[Out]

int((1/cos(c + d*x))^(3/2)*(a + a*cos(c + d*x))^3, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**3*sec(d*x+c)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________